Adaptive Scheduling of Streams
in Real-time Applications

Marek Balej, Zdenek Hanzalek
Czech Technical University in Prague

Contents

e Time-triggered Approach and Problem
description

e Scheduling with time constraints

 Adaptive scheduling, i.e. adding new
messages/nodes into the existing schedule

Search space of real-time problems

(?.72,?2,?2,7)

!

0,2.2.2.7)
(0,2,?””?,3,?)

.,2,5,7,7)(0,2,?7,5,7)(0,3,1,7,7)(0,7,1,3,7) (0,7,?,3,7)(0,?,7,3,?)

| l l |

0,2,5,7,?)(0,2,9,5,7)(0,3,1,6,?)(0,7,1,3,?) (0,7,10,3,7X0,9,7,3,?)

(0}/@(@91?9{;%)(0,3,1\6,10)@}(\11) 0 ,\' 14)(%)

Complexity of the optimal synthesis problem is comparable the one of
the verification/analysis problem.

In practice: sub-optimal solution, found in a part of the search tree (e.g.
by heuristic algorithm) has practical value, but partial verification (i.e
the one which does not consider all possible behaviors) has none.

It is easier to synthesize the time-constrained system than to leave
the freedom to the designer and consequently verify its time properties.

Problem Description

Time-triggered scheduling
Non-preemptive scheduling

Routing Is given (e.g. tree topology)
Centralized algorithm

Respecting time constraints

(Non-adaptive) Scheduling

Basic assumptions
* Tree topology

e switch integrated in each
node (special HW)

e full duplex

Time-triggered interval
e highest-priority

e strictly isochronous -
Precision Transparent
Clock Protocol

e data are forwarded
according to a static
communication schedule

=
[y

communication cycle

Class 3
(red interval) Class 2 Class T/NRT reserve
l Ty 126, 1168 [T 257,576 [] '
10 20 30
[T3:256,5.76 I | 1258 576 [| '

10 20 30
| T,,:128,1168 |_I
10 20 30

| T,: 256,576 I |
10 20 30

| Toi128 1168 [| Ty 257,575 | | T,:259,5.76 | I
10 20 30

| Tq0:128,11.68 []

5 10 20

max

30 ’[tlus]
C
5

Input Parameters of the Scheduling
Problem

List of links link || Ny =Nz [Ny =Ny | Ny = Np | No=N; | N3 = N; | Ng= N | N3 = Ns | N5 = N3

e J|ink de|ay Trplns] || 4875 | 5130 | 5862 | 3841 | 4875 | 4895 | 4875 | 4875

Irp=17.p +1cp +1rep +10wa+1BD

List of messages

¢ Ssource
i de5t|nat|0n(5) ID path Trp [ns] | r [ns] (T[ns] e [ns]
° tra nsmMission delay 256 No — N3 5760 | 5000 20000 1 1000
. 257 N3 — No 5760 | 15000 40000 15000
e required
q 258 N; — N3 5760 | 15000 — —
o
release date 259 N3 — N; 5760 | 20000 35000 -
e deadline 128 N3 — {N1.No, 11680 5000 {-—, {-17675,
N4.N5} - 18000} 17675,15000}

 end-to-end delay
e multicast message — used e.g. for synchronization

Problem Refinement

The objective is to find the shortest schedule for the TT interval based on a
network topology/parameters, message parameters and required position in
the schedule

* messages on the same link are separated with a minimum inter-message gap
(added to the transmission delay T;p)

e assoon as the first bit of a message is received, it may be forwarded to
another link, i.e. if T, 5 < T;p, two nodes may process a different part of the
same message at the same time

TTD
overlapping precedence relation
T
N1-N3 L
D

Solution of TT scheduling

Formulation in terms of the Resource Constrained Project
Scheduling with Temporal Constraints minimizing the
schedule makespan (denoted PS|temp|C

max)

Tree topology of nodes
e determines the rooting of messages

Unicast message
* chain of tasks executed on dedicated communication links

e chain starts at the source node and ends at the destination
node

Multicast message
* tree of tasks

Modeling by PS|temp|C

Task execution corresponds to a
transmission of a message on
the respective link

e Transmission delay -
processing time equal to Ty

e Link delay - edge with positive
weight T, 5
e Release date — edge with

positive weight from dummy
task to source task

e Deadline - edge with negative
weight from sink task to
dummy task

e Required end-to-end delay -
edge with negative weight
from sink task to source task

Max
Z7 TN

T2 T3
2-1 1-3 256
6880 6880

-4120
5000 - 13120 __A__iij\::;:;;::iiiiiy

4875
6880 6880
&\\\‘ .Siii/:::;7

Ti - 33120
e ——
0

1 \\\\\xﬁh__—a !
l 15000 6
\ 1-3 258
6880
|
'Il
\ 20000
Tz
‘ 3-1
-28120\ 6880
=

5000

0

128

ILP formulation of the problem

input: vector p, processing time of the tasks

vector o, assignment of tasks to links

adjacency matrix W
internal variables: z;; is equal to 1 iff task 7; is followed by task 7’
output: vector s, start time of the tasks

makespan Cp0

min Crps

subject to:
S5 — 84 = Wy, Vi,§ €1,...n|wy > —co
si—38; +UB - xzy = py, Vi,j€l,...,n|i>jAa;=ay
s;— 8+ UB (1 —24) = ps, Vi,j€1l,...,nli>jAa;=ay
ss+ pi < Crngas Yiel,...,n

where: Ty € {0,1}; 84, Crnge €]R[)‘" and U B is a constant such that UE > U,

11

Scheduling

e Results returned by a heuristic using MTS (Most Total Successors) priority
rule for the same instance

Topology n Cmax (ps)
1 140 47,20
2 290 116,00
3 440 150,40
4 960 219,20
5 510 120,26
6 880 154,66

e Schedules are computed in a fraction of time compared to ILP
e Cmax is close to optimal one, computation times are in the range of 10ms

Topology 2

Adaptive Scheduling

(also called Rescheduling)

What if we need to add a new message/node into the existing
schedule?

Free rescheduling - make a new schedule from scratch — finds
a new place for all tasks (both new and original ones) - the
algorithm is the same

Fixed rescheduling - add new tasks without moving the
original ones

Schedule may “degenerate” (increase of makespan of the
schedule) if we fix positions of original tasks, but scheduling
process is faster (it schedules only new tasks)

Degeneration is not very big, depends on the topology and
may be eliminated by free rescheduling from time to time

Schedule with new messages and with
fixed original tasks (fixed rescheduling)

* Another instance for
the same topology

* Blue tasks were in the
original schedule

* The new message
contains new tasks 10
and 11

e Task 11 caused the
prolongation (it must
wait until execution of
his predcessor which
cannot be placed earlier
in the schedule — this
breaks the priority rule)

3>

N
v

Message Tasks
1 4->5
2 6->7
3 8
4 9
5 11->12
multicast 0,1,2,3

40000

Completely new schedule for the same
messages (free rescheduling)

* The same instance as on the 3->5_

previous slide

*|f we make a new schedule

from all tasks (both original :.: 0 -—
and new), task 10 will be
placed earlier because it has *

higher priority than task 9 and. ..

1

its successor can be executed

earlier in the schedule and in
this case, the resulting 153

schedule is optimal

Effect of adding new message

If we cannot move the original tasks, we cannot use the priority rule for
the whole schedule (it works only with messages added in current time)

Adding a task with high priority often causes a prolongation of the
schedule

This problem occurs mainly on the critical resource

The length of prolongation is dependent on the number of nodes
traversed (number of tasks) starting from the critical resource

The prolongations do not sum-up, i.e. rescheduling can make use of the
unused space in the previous schedule

Experiments

Tests of degeneration of schedule makespans (a comparison of the two
previous ways — free and fixed rescheduling)

Results are an average of 300 instances
Messages have different transmission delays - 6880, 4000, 2560 ns
Messages were added in cycles. 5 messages were added in each cycle.

This schedule was compared with the schedule where all the same tasks were
scheduled at once.

Messages were generated at random

Using two algorithms for fixed rescheduling:
— fixed 1 — we cannot move the tasks that were already scheduled
— fixed 2 — we can move the tasks that were already scheduled if they have no successors (this
change cannot expand into the whole schedule)
Tested for 5 priority rules, but there are no big differences between them (the
results shown in this presentation apply to MST priority rule)

Tested for two schemes but parallel scheme is more complex in rescheduling
than the serial scheme

Parameters of the tests

Inputs

Topology — there are 7 different topologies
Cycles — number of cycles for adding new messages

N — number of tasks in the original schedule

* N, —number of added tasks (sum for all cycles)

Outputs

. Cﬂ:jj — average makespan of schedule when all tasks are scheduled at once
. C{,’,Zid — average makespan of schedule when tasks are added in cycles

AC,,qax — percentage difference between two previous makespans

ACWOISt — the biggest difference in makespans from all instances (percentage)

T?.ee — average time of scheduling of all tasks at once (this is not directly comparable with the next
parameter, because if we use scheduling of all tasks, we must do it in every cycle butT{,"eecontains
only time for scheduling after the last cycle)

T?“‘f — sum of scheduling all scheduling cycles

d/"¢€ — average end to end delay for the first way

d’*ed _ same as the previous for fixed original tasks

Results — small instances (10 cycles)

FREE RESCHEDULING

FIXED RESCHEDULING 1

Topology n Nnew C,{J,? T(.f | e Cr{*zi;xg . ACnax AC?K&'Q“ T(_f ed ghremae
ms (us) (%) (%) ms (us)

1 228 244 114,888 5 37,835 | 128,631 11 26 0 34,744

2 340 373 129,928 11 51,821 | 163,419 25 53 1 46,688

3 347 370 129,736 11 49,944 | 164,21 26 48 0 46,599
4 599 526 164,457 24 63,71 | 224,802 36 58 2 57,56

5 615 526 163,96 25 70,206 | 226,122 37 61 1 64,192

6 1186 | 697 196,689 70 88,536 | 268,092 36 52 6 84,784

7 416 217 163,955 4 59,263 | 169,318 3 7 0 56,804

FIXED RESCHEDULING 2

* For smallinstances AC__ is big in el | A (SRR ch"“d dfixed
some cases (us) (%) (%) (ms) | (k)

* Big differences in AC__ and AC%V;);St 121,517 6 22 0 | 35768

between difference topologies S o . g ahen

* Fixed rescheduling is much faster o aa = == = ol

* No big differences between fixed Lt = > 2 08,386

) 221,24 37 59 2 64,624

rescheduling 1 and 2 266,311 35 50 9 85 589

167,691 2 < 0 7,275

Results — medium instances (25 cycles)

FREE RESCHEDULING FIXED RESCHEDULING 1
Topology| n | nmew| Chax | TE°| @77 | CRaE? | ACmax | ACwa" | TL™¢ | dfixed
1 228 | 607 | 178,918 12 51,299 | 193,666 8 17 2 44,816
2 340 | 927 | 214,227 28 72,499 | 247,833 15 30 < 58,058
3 347 | 933 | 216,036 29 70,355 | 250,534 15 30 6 57,207
4 599 | 1313 | 235,024 59 87,282 | 303,912 29 46 8 69,46
S 615 | 1312 | 244,262 60 92,665 | 307,484 25 R 10 75,912
6 1186 | 1749 | 267,356 | 142 | 111,457 | 349,302 30 0 22 97,321
7 416 | 545 | 242,189 9 83,153 | 245,904 3 7 0 76,546
FIXED RESCHEDULING 2
| | ol | 4G, | ACTE | pited | Jfees
* The percentage AC__ is lower than in (us) (%) (%) (ms) | (us)
smaller instances and the absolute value of 184,234 3 14 0 46,61
ACmax is very similar (no increase) 241,61 12 31 3 60,149
244,542 13 31 2 58,974
301,311 26 44 7 72,219
304,813 24 38 7 78,06
345,445 30 49 21 97,875
243,139 1 3 0 77,329

Results — big instances (100 cycles)

FREE RESCHEDULING FIXED RESCHEDULING 1
Topology| 1 | tinew| Chax |TE| @770 | CRaZ® | ACmay | ACuE | TLO| dfoved
1 228 | 2432 | 495,96 81 22317 - b e | 3 - 3 89,95
2 340 | 3714 | 642,31 194 206,71 676,50 5 9 9 105,03
3 347 | 3702 | 639,24 194 201,26 675,48 5 10 10 102,27
4 599 | 5262 | 647,76 401 232,48 714,81 10 17 L 119,66
5 615 | 5280 | 659,52 404 235,02 724,43 9 14 37 124,08
6 1186 | 6981 | 671,53 795 260,38 756,74 12 20 72 148,60
7 416 | 2174 | 636,59 76 201,42 646,78 1 3 4 174,65
FIXED RESCHEDULING 2
* Still no increase in absolute value ofACmax, Cr{zf;d Acgnax AC,‘,EQT chMd gl
so the percentage values are a%ain lower (L o8 £l (ms) &)
* For big instances, values ofd ixed are .- = 4 S |
free 643,21 1 7 68 129,481
much better than values of d | 650,00 Y c 72 |127.031
* Now we can see that the second algorithm 695,24 3 12 128 | 137.564
for fixed scheduling shows a little better 703,17 7 14 128 | 142,732
results for ACmaX , but the computation 738,28 11 18 205 |162,644
time is longer 636,71 0 0 3 180,409

We are looking for collaboration

* API related to application your experience
— End-to-end dealy
— Absolute time windows (deadlines, release dates)
— Time windows relative to some event
— Synchronization of tasks

— Parameters for adaptivity
e fixed messages-nodes combination of free and fixead resched.
e constraints to be respected in mode changes

— Redundance issues
e Typical topologies/data for benchmarks
* Integration of our algorithms to your products

