

AVB and Fault Tolerant Networking

IEEE 802.1 AVB Real Time Communication Symposium Munich, January 17, 2012 Andreas Dreher, Strategic Technology Manager

BELDEN - Signal Transmission Solutions

- 1.62 billion US\$ revenues (2010), 6600 employees
- Company HQ: St Louis, MO, USA
- Hirschmann HQ: Neckartenzlingen, Germany

- Industrial Cables
- Networking Cables
- CATV Cables
- Broadcast Cables
- Optical Fiber Cables

- Industrial Ethernet Switches
- WLAN & Security
- Network Management

- Industrial Connectors
- Distribution boxes

Hirschmann Target Markets

Industrial Communication Infrastructure for

Public Transport

Oil & Gas

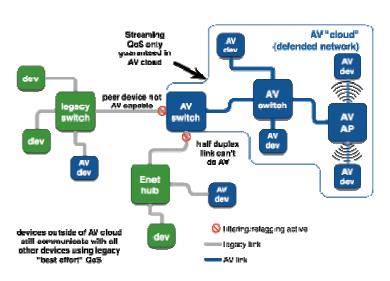
Traffic Control

Chemical / Petrochemical

Power Generation

Factory Automation

Power Transmission & Distribution


Machine Building

Hirschmann AVB Activities

Hirschmann – an AVB technology pioneer

- Involved in AVB technology since 2007
- Active work in IEEE 802.1 AVB standardization group
- Contributions to working group with
 - Industrial application requirements
 - Low-Latency concepts
 - Fault tolerance concepts

(Source: IEEE802.1 AVB task group)

www.hirschmann.com

ETHERNET

moves from an IT technology

to a communication protocol used in many different applications!

ETHERNET

moves from an IT technology

to a communication protocol used in many different applications!

INDUSTRIAL AUTOMATION

- Machinery
- Robot Control
- Oil, Gas, Chemical, Pharmaceutical
- Food & Beverage
- Automobile Production

- ...

Control and Supervision

ETHERNET

moves from an IT technology

to a communication protocol used in many different applications!

PROFESSIONAL BROADCAST

- TV Studios
- Theaters, Event and Sport Locations

- ...

Audio, High resolution Video, Control

ETHERNET

moves from an IT technology

to a communication protocol used in many different applications!

SMART GRID

- Power Plants
- Alternative Power Generation
- Electrical Power Transmission & Distribution

- ...

Measurement, Monitoring
Control and Protection
Metering, Billing, Pricing
Energy Management, Outage Management,
Demand Response

ETHERNET

moves from an IT technology

to a communication protocol used in many different applications!

AVIONICS

- Infotainment
- Control
- Fly-by-Wire

- ...

Audio, Video Safety Critical Control

ETHERNET

moves from an IT technology

to a communication protocol used in many different applications!

AUTOMOTIVE

- Infotainment
- Diagnostics
- Control
- Drive-by-Wire

- ...

Audio, Video Safety Critical Control

ETHERNET

moves from an IT technology

to a communication protocol used in many different applications!

RAILWAY SYSTEMS

- Passenger Information Systems
- Train Control Systems
- Railway Traffic Management Systems

- ...

Audio, Video Safety Critical Control

ETHERNET

moves from an IT technology

to a communication protocol used in many different mission critical and safety relevant applications

ETHERNET

moves from an IT technology

to a communication protocol used in many different mission critical and safety relevant applications

Future Applications:

?

?

?

?

How will they look like and what will be their specific requirements?

→ A future proof AVB needs meet the highest possible performance requirements and needs to be highly adaptable to topology / fault tolerance requirements...

Because we don't know what the future has in store for us!

Communication Requirements

REQUIREMENT	APPLICATION EXAMPLE	IMPACT OF SYSTEM FAILURE
RealtimeDeterministic behaviourHigh availability	 High Speed Machinery Robot Control Train Control System Electrical Power Protection System Drive-by-wire, Fly-by-wire Emergency shut-down Broadcasting System 	 High financial losses Damage of assets Danger for human lives Impacts on the environment

Additional Requirement:

Flexibility, adaptation to various application scenarios

www.hirschmann.com

Today's Solutions...

If possible:

Use standard Ethernet

For more demanding applications:

Proprietary (beyond IEEE802 specifications) extensions

- AFDX (avionics)
- Profinet IRT (motion control)
- EtherCAT (industrial automation)
- Powerlink (industrial automation)
- Varan (industrial automation)
- Sercos-III (motion control)
- TTEthernet (avionics)
- and many others...

All those protocols and technologies use Ethernet as a base technology, but do make some special modification to improve realtime behaviour!

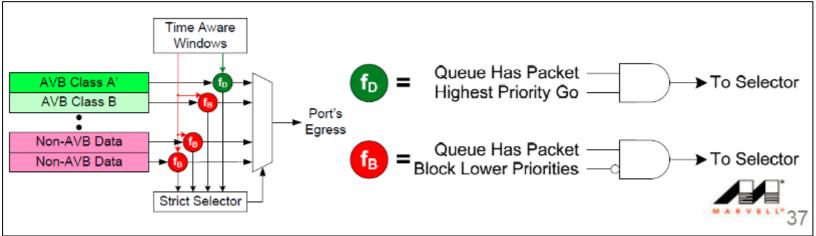
Tomorrow's Solution: AVB?

IEEE 802.1 Audio/Video Bridging Task Group

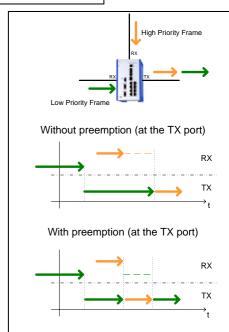
AVB – Audio/Video Bridging

- Defines an enabling technology for deterministic real time applications
- Open and flexible, applicable to different applications
- Works in combination with existing and future Ethernet based systems
- Nevertheless cost effective

Low Latency Networks


Important Requirement: Low Latency

- Create an Ethernet based networking technology providing lowest possible latency and latency variation
- Meet Quality of Service requirements


Low Latency: Preemption and Time-Aware Scheduling

http://www.ieee802.org/1/files/public/docs2011/new-avb-pannell-latency-options-1111-v2.pdf

- Time-Aware scheduling and Preemption in combination is a feasible approach to provide low latency
- The two technologies complement each other
- With 100 MBit/s Ethernet, Preemption has large impact on max latency, augmented by the Time-Aware Shaper
- With 1000 MBit/s Ethernet and above, Preemption remains useful but in relation to preemption, the overall importance of the Time-Aware Shaper increases

Preemption and Time-Aware Scheduling provide the necessary performance for todays' and future application fields!

Fault Tolerant Networks

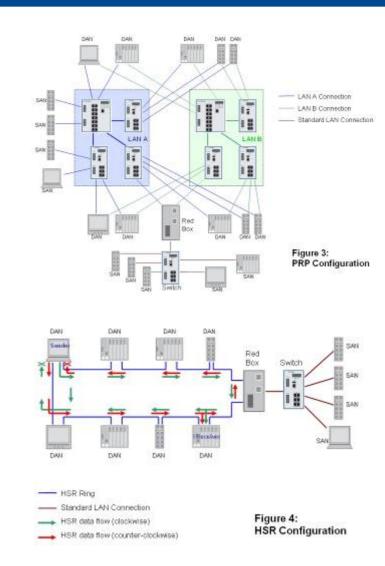
Important Requirement: Highest possible Reliability

- Create an Ethernet based networking technology that guarantees highest availability
- Can use existing and future redundancy mechanisms and protection switching schemes
- Works in "zero packet loss" applications
- Independence from specific protocols

Example of redundancy control protocols

IEEE 802.1	IEEE Standard for Local and metropolitan area networks Rapid Spanning Tree Protocol Multiple Spanning Tree Protocol Shortest Path Bridging
IEC 62439	INDUSTRIAL COMMUNICATION NETWORKS – HIGH AVAILABILITY Parallel Redundancy Protocol (PRP) High-availability Seamless Redundancy (HSR) Media Redundancy Protocol (MRP)
ITU-T G.8032	Packet over Transport aspects – Ethernet over Transport aspects Ethernet ring protection switching

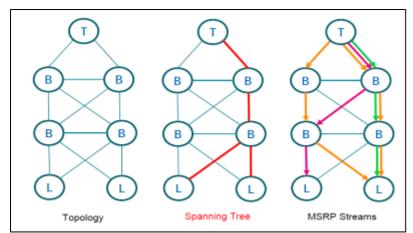
www.hirschmann.com

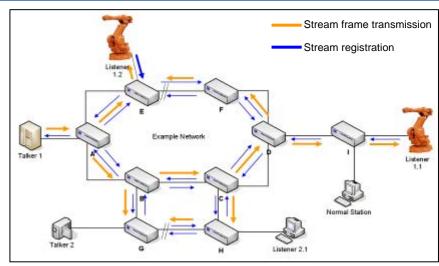


Fault Tolerant Networks

Example of Redundancy Protocols

- Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR)
- ➤ Defined in IEC 62439-3 (High availability automation networks, Part 3)
- Unlike other protocols there is no reconfiguration in case of a failure.
 Instead data is transmitted on 2 independent paths simultaneously.
 Protocol has to do the frame duplication at transmit side and has to discard the duplicates at receive side.


AVB has to work with those concepts



Multi-Path SRP

- Allows stream registration on more than one single path at a time
- Enables usage of SRP with redundancy protocols to increase fault-tolerance
- No binding of SRP to specific (redundancy) protocols, but...
- Registration on all available paths and...
- (Redundancy) protocols can decide which paths to use for stream frame transmission
- ... through a service interface

 $\label{linear_http://www.ieee802.org/1/files/public/docs2011/avb-phkl-srp-stream-path-selection-1111-v01.pdf$

http://www.ieee802.org/1/files/public/docs2011/at-kleineberg-AVB-media-redundancy-0311-v02.pdf

- This allows the flexibility needed to...
- address future application scenarios (e.g. specific topology setups) and
- Routing and redundancy protocols can access and shape the logical topology through this service interface
- allows future protocols needed in new applications fields to shape stream flows according to their requirements

Flexible and future-proof approach!

21

www.hirschmann.com

Summary

- New Ethernet based Applications are coming up with mission critical and safety relevant requirements
- Lowest latency and highest reliability are needed yet the mechanism needs to be highly adaptable to meet future application needs
- A communication protocol is needed to address those requirements
- AVB generation 2 can be the solution if it does meet those requirements!

