Management System for Remote Substation Secondary Equipment

KEMA SEMINAR June 17, 2003 Amsterdam
AGENDA

- Who is Red Eléctrica
- Current situation
- New Project
 - Objectives
 - Characteristics
- Control Centre configuration SIGRES-CC
- Security
- Substation equipment SIGRES-NT
- Project milestones
- Conclusions
Who is Red Electrica?

- Leading Power Transmission Company in Spain
- Responsible for the management of the whole Spanish Transmission Grid
- Spanish System Operator
- Owns most of the Spanish Transmission Grid:
 - 27,000 Km of 400 kV, 220 kV and 132 kV Transmission Network
 - 1,746 Positions in more than 500 HV Substations
 - 26,966 MVA Transformation
- Operates the Ancillary Services Market
- Non regulated activities:
 - Consulting Services and Foreign Investment REI
 - Telecommunication Services ALBURA
Current Remote Maintenance System Architecture ALEF
Project Objectives

- Implement an Integrated Environment for Substation Secondary Equipment Management and Maintenance using and extending the IEC 61850
 - First step:
 - Protection relays
 - Local Control Systems
 - Battery Chargers
 - Further steps:
 - Any device with communication capabilities
 - Gracefully integration of “native” IEC 61850 IEDs

- Integrate the requirements of the New Substation of REE NSR, based on the same technologies
 - The IEC 61850 standard
 - IP protocol with Ethernet LAN access interfaces
Project Characteristics

- Standardised Services for maintenance and management of substation equipment:
 - Data and Operation consistency check
 - User’s contention when accessing system resources
 - Active and passive security control
 - Operation traceability
 - What has been done?
 - Who did it?
 - User-friendly working environment
 - Open and secure working environment

- Ubiquity Services

- Use mainstream technologies:
 - Java, Web Services, XML/SVG Graphics
System Architecture

REE Corporate LAN

REE Headquarters
Madrid

SIGRES-CC

Sigres-NT

IP WAN (Serv IP)

Substations

User

User

900 xxx xxx/ VPN

Internet

RTB/ADSL/ISDN

Remote User

SIGRES
SIGRES Working Environment

- ALEF
- IED 61850
- IED
- IED
- Legacy Protocols
- SIGRES NT-Terminal Node
- IEC 61850
- SIGRES CC-Control Centre
- Web Services
- https/HTML/XML
- EMS/SCADA
- APPLICATIONS
- USERS

SIGRES
SIGRES-CC Characteristics

- Fault-tolerant system
- Native management of 61850 IEDs
- Three-layer Architecture
- Oracle Data Base
- Communication with existing Management Centre (ALEF)
 - Integration of existing data in SIGRES-CC data base
- Standardised information model for data interchange (XML)
- Web Services “interface” with Applications (SCADA/EMS..)
- Web Browser based MMI Interface
- Specific Graphic Interfaces
 - Fault-recorders and PMUs
- Substation Configuration Tool based on IEC 61850 (Draft) SCL
- Intrinsic security based on international standards
Design & Project Principles

- Scalability and Modularity
- Hardware independence (Platform migration)
- IEC 61850 architecture adoption
- Based on existing or ongoing standards
 - No proprietary solutions whether HW or SW
- REE Ownership of the Design and Code
- Procedures to install the whole System from scratch
- REE has to be able to carry out the System Maintenance after Commissioning
Services

- Substation Remote supervision using RTUs or SAC
- RTUs and SAC Data Base Download
- System Management
- Historian and data logs
 - User’s reports:
 - Protection relay configuration and settings
 - Trips and commands
 - Chronological register
 - Operator’s commands and system utilization time
- Process Automation
 - Individual or Block Relay setting Configuration
- Security
- Substation equipment configuration
IEC-61850. A New Set of Possibilities

- IEC 61850 defines three basic aspects:
 - Communication protocols
 - IP and MMS
 - Substation devices modelling
 - Services

- IEC 61850 a unique working environment
 - Services and object models are harmonised
 - Services and object models are unique whether inside the substation or from the substation to the control centre
 - Object models and services are independent from communication protocols
SIGRES map to IEC 61850 Architecture

Station Level
- Technical Services
- AUXILIARY FUNCTIONS
- CCS
- PROT.
- CONTROL

Bay/Unit Level
- PROT.
- CONTROL

Process Level
- BAY

Levels:
- L0
- L1
- L2
- L3
SIGRES map to IEC 61850 Model (I)
SIGRES map to IEC 61850 Model (II)

LINK with SIGRES-CC Sample

SIGRES-CC (Gestor IEC-61850)
 IHMI

SIGRES-NT
 LD1 (Sigres-NT)
 LPHD
 IARC
 LNIO
 ITMI

 LD2 (Oscila)
 LD4 (Interruptor)
 LD3 (Protección)
 LDS (Trafo)
IEC 61850 Logic architecture
IEC 61850. A New Paradigm

CONTROL CENTRE

LOCAL CONTROL (SCI)

IED

PRIMARY EQUIPMENT

CIM

Mapping

IEC 61850

IP+MMS (OTHERS)

IP+ MMS

Ethernet

LN (OBJ)

SERVICES

MAPPING

COMMUNIC.
Logical Node Structure

- LOGICAL NODE
 - Common information Independent from the function of the LN
 - Status, process or function information
 - Settings Information needed to configure the LN
 - Measured Values
 - Controls
61850 Management and Maintenance Functions

- FULLY INTEGRATED
 - Management and maintenance services are built into the object models
 - Implemented using the services built into protection and control functions
- Management and maintenance functions cannot be isolated from 61850 services.
 - SIGRES has to be integrated in a 61850 environment
Migration from Legacy to 61850

- SIGRES-CC
- IP WAN
- SIGRES-NT
- IED
- IED
- Management of 61850 Devices
- 61850 MODELS & SERVICES
- LEGACY PROTOCOLS
SIGRES. A Step Forward

- IEC 61850 services become integrated in an open execution environment
- SIGRES evolves 61850 services
 - 61850 services will be available outside the substation
 - 61850 services can be used from a Web environment
 - Global view of the system
 - Direct control of IEDs without loosing the global view
- SIGRES complements 61850 services
 - Standardised user’s interface
 - Distributed services
 - Auxiliary services configured from 61850 services
SIGRES. A Distributed Application Environment

- Users can be distributed
 - An IP network provides connectivity

- Applications can be distributed
 - An IP network provides communication between applications

- The internal process can be distributed
 - A network provides connectivity between objects

- EVERYTHING CAN BE DISTRIBUTED
 - A Middleware architecture provides an access environment to the services
Web Services

A Web service is a software application identified by a URI, whose interfaces and bindings are capable of being defined, described, and discovered as XML artifacts. A Web service supports direct interactions with other software agents using XML based messages exchanged via internet-based protocols.

- Based on Agents
 - Service requestor
 - Service provider
 - Discovery agency
 - Service publishing
 - Service finding
Service Oriented Architecture
Protocol Architecture

DESCRIPTION
- UML
- WSDL
- XML
- SOAP

TRANSPORT
- HTTP
- TCP/IP

UDDI
LDAP
User’s Interface
Hardware Architecture (I)

Fault-tolerant environment designed to support the Three-Layered architecture

- Data base Server
 - Redundant cluster
- Application Server
 - Redundant cluster
- Printer Server
- Development platform
 - Small size version of DB and application servers
- System management terminals
- Security
 - Redundant Firewalls
 - Redundant RADIUS servers for remote access control
Hardware Architecture (II)
Security Architecture

- Secure Zone. Access through a Firewall
 - No access allowed for users
 - Data base Server
 - Management sites
 - Printer Server
- DMZ. Access through a Firewall
 - Access to enabled users
 - Application Server
 - Development platform
 - Remote users authentication server
SECURITY

Key Issues in a Secure System

- Authentication Who is the user?
- Authorization What can the user do?
- Auditing What has the user done?
SIGRES Security Performance

- Prevention form internal or external attacks
- Standardised public key architecture (PKI)
 - ITU-T X.509 rec.
- Every data interchange is carry out in secure mode
 - Authentication and Ciphering
- Security is applied to every kind of access
 - Corporate LAN
 - ServIP (Corporate IP WAN)
 - Remote access through public network using a dedicated RADIUS server
- Wide variety of user profile configurations
- Security auditing
SUBSTATION EQUIPMENT SIGRES-NT

- Interfaces legacy substation equipment with the new 61850 environment
- Supports the services offered by SIGRES-CC
- Automatic configuration from SIGRES-CC
 - Application Software
 - Object models
- Rugged design able to work in hazardous environment like bay control cabinets
 - Equipped to fulfil bay requirements
 - 1 Ethernet port
 - 6 serial ports
- Helps in the integration of legacy devices into the new substation architecture
Specific Characteristics

- Remote supervision and BD download functions supported
- Auto-checking
- Event time-stamping with 1 mseg resolution
 - GPS Synchronization
- Built-in IEC 61850 Server
 - Communication with SIGRES-CC using 61850
 - Conversion of legacy IEDs to 61850 objects
- Supports all the maintenance and management protocols used by REE
- Chronological registers acquisition
- Open Software. Hardware platform independent
 - IEC 61850 KEMA certification required
Substation Communication Architecture

IP WAN

Router

Switch

F.O.

HUB

IED 61850

SIGRES-NT

IED 61850

IED 61850

IED 61850

IED 61850

IED 61850
The selected supplier is a Spanish company named ELIOP with international projection and experience in Substation Automation and Control Centres development, and also strongly committed to the IEC 61850.

- **MS 1. Functional specification** November 2002
- **MS 2. System Supplier Selection** May 2002
- **MS 2. Project Start** June 2003
- **MS 3. Project Development & FAT** December 2003
- **MS 3. Project SAT** February 2004
CONCLUSIONS

- Powerful complement of the new substation architecture NSR
- Single working environment for all the services
- Standard working platform
 - Unified
 - Flexible
 - Secure
 - Ubiquity
 - Integrated in the new standard IEC 61850
- Operational cost reduction
 - Lower number of equipment required
 - Wiring simplified
 - Maintenance simplified
Questions ?